Weight Decomposition and Characters (Kirillov Ch 8.1)
The strategy to study representations of g (Complex
Decompose the representation into
eigensputes for the Gatan Subalgebra.
Defl Lot V be a representation of g. A vector veV is
called a vector of weight
$$\lambda \in h^*$$
 if:
Wheth, one has $hv = \langle \lambda, h \rangle v$.
The space of all vectors of weight λ is called the weight space
and denoted VCXJ:
 $V(\lambda) = \{veV \mid hv = \langle \lambda, h \rangle V \ Vhech \}$

Proof. Let $\alpha \in R$ be a root. Consider the corresponding $\mathfrak{sl}(2, \mathbb{C})$ subalgebra in \mathfrak{g} generated by $e_{\alpha}, f_{\alpha}, h_{\alpha}$ as in Lemma 6.42. Considering V is a module over this $\mathfrak{sl}(2, \mathbb{C})$ and using the results of Section 4.8, we see that h_{α} is a diagonalizable operator in V. Since elements $h_{\alpha}, \alpha \in R$, span \mathfrak{h} , and the sum of the commuting diagonalizable operators is diagonalizable, we see that any $h \in \mathfrak{h}$ is diagonalizable. Since \mathfrak{h} is commutative, all of them can be diagonalized simultaneously, which gives the weight decomposition.

Since weights of $\mathfrak{sl}(2, \mathbb{C})$ must be integer, we see that for any weight λ of V, we must have $\langle \lambda, h_{\alpha} \rangle \in \mathbb{Z}$, which by definition implies that $\lambda \in P$.

Our Lie Algebra g can be decomposed in the following way: $g = n_{\pm} \oplus b \oplus h_{\pm}$, where $n_{\pm} = \bigoplus_{x \in R_{\pm}} g_x$.

Proof. Let P(V) be the set of weights of V. Let $\lambda \in P(V)$ be such that for all $\alpha \in R_+$, $\lambda + \alpha \notin P(V)$. Such a λ exists: for example, we can take $h \in \mathfrak{h}$ such that $\langle h, \alpha \rangle > 0$ for all $\alpha \in R_+$, and then consider $\lambda \in P(V)$ such that $\langle h, \lambda \rangle$ is maximal possible.

Now let $v \in V[\lambda]$ be a non-zero vector. Since $\lambda + \alpha \notin P(V)$, we have $e_{\alpha}v = 0$ for any $\alpha \in R_+$. Consider the subrepresentation $V' \subset V$ generated by v. By definition, V' is a highest weight representation. On the other hand, since V is irreducible, one has V' = V.

Note: It is possible that we have many non-ison orphild
highest weight representations with the same highest
weight However, in any highest representation with highest
weight vector vie VCAD, the following holds:
1)
$$hv_{3} = \langle h, \lambda \rangle \vee \forall h \in h$$

2) $\chi v_{3} = 0 \forall x \in N_{+}$

Vefs The miversal highest weight representation Mz, generated by a vector Vz Satisfying 1) hun= <h, >>V Hheh Jerne 2) Xun = O Haent Jabove and no other relations. $M_{\lambda} := Ug/I_{\lambda}$. I is the left ideal in Ug generated vectors een, and (h-Lh, X>), heh. This module is called the verna models. · Quite important to representation theory. Define the Borel subalgebra b by $b = h \oplus n_{\pm}$ K conditions define a one-dimensional representation of b which we will denote Cz.

Lemma' Let h be a commutative, finite-dimensional Lie Algebra
and M a module over h (not necessarily finite-dimensional) which
admits a weight decomposition with finite-dimensional might spaces:

$$M = \bigoplus M [27], M [27] = Ev[hv = \langle h, \lambda \rangle v]$$

Then any submodule, quotient of M also admits a neight decomposition.
Corrolary: In any highest neight representation,
there is a unique highest neight representation,
there is a unique highest neight vector.
PfI This is clear since if λ , μ are highest
Whights $\Longrightarrow D \leq M$ since μ is a highest neight
and $\mu \leq \lambda$ since λ is a highest neight:
Hence, $M = \lambda$. D

For
$$g = SI(Q, C)$$
, if $\lambda \in \mathbb{Z}_+$, $L_q = V_q$ is the
finite -dimensional irreducible module of dimension
 $\lambda + 1$ and $L_q = M_\lambda$ for $\lambda \notin \mathbb{Z}_+$.
Since every finite-dimensional representation 1s a highest
Weight representation, we get that
Corollary Every irreducible finite-dimensional
REO Every irreducible finite-dimensional
representation V is isomorphic to one L_λ .
To classify all irreducible finite-dimensional
representations of g_s we first need to find which
 $L_\lambda = re$ finite-dimensional.
Defl For a weight $\lambda \in h^*$ is called dominant integral
 $\langle \lambda, \alpha' \rangle \in \mathbb{Z}_+$ $\forall \alpha \in \mathbb{R}_+$.
 $P_+ = \int All dominant integral weights \zeta$.
Alternate Defl A weight $\lambda \in h^*$ is called
 $\overline{Quinnant integral}$ if $\frac{Q(\alpha, \lambda)}{(\alpha, \alpha)} \in \mathbb{N}$ $\forall \alpha \in \mathbb{R}_+$.

The (8:2) Inveducible highest weight vepresentation
Ly is finite dimensional
$$\iff \lambda \in P_{4}$$
.
Proof in Kirillov pg. 172-173 The 8.23.
Sketch of Pfl.
"=>" Suppose dim Ly=n < ...
Sketch of Pfl.
"=>" Suppose dim Ly=n < ...
Sketch of Pfl.
"=>" Suppose dim Ly=n < ...
Subalgebrain g which
Let a CR+ be a possible root.
Subalgebrain g which
SQ(2,C) = < ex, fx, hx) < ...
Subalgebrain g which
SQ(2,C) = < ex, fx, hx) < ...
"The highest-weight vector $v_{1} \in L_{1}$
Satisfies $e_{\alpha} V_{1} = 0$ and $h_{\alpha} v_{2} = \lambda(h_{\alpha})v_{1} = \frac{\lambda(\alpha, \lambda)}{(\alpha, \alpha)}v_{1}$.
However, in a finite-dimensional representation of $sl(2, c)$.
However, in a finite-dimensional representation of $sl(2, c)$.
Hence, $\frac{\partial(\alpha, \lambda)}{(\alpha, \alpha)} \in IN \implies \lambda \in P_{4}$.

Let $\lambda \in P_{4}$ and $L_{1} := M_{1} / S M_{1}$, where
 M_{1} is a proper submodule of M_{2} .

Then, L_{k} is finite-dimensional.
(Proof of Thm : Kirillov Chapter 8.4 (Eather Section))

Lorullary HAEPt, Lyis an irreducible finite=dimensional representation. Thise representations are pairwise non-isomorphic. Every irreducible finite-dimensional representation is isomorphic to one of them. The last Theorem we just proved and the fact that every irreducible representation of g is a highest weight representation. I This corollary

