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HighestwrightRepresentationsandromanaddroIn
ordertostudy irreduciblerepresentations

we will begin by first discussing a class of
representationswhich are generatedby a single vector

Consideringinfinite dimensionalrepresentations is a
useful toolinordertoaid our understandingof
finite dimensional representations

OurLieAlgebra g canbe decomposedinthe
followingway
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highestweight
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Dpd Theuniversal highestnight
representation

My generatedby a vector Vy
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study of submodules in Vima
modules
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Let U be a highestweight representationwith
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submoduleWCMaadmitsa nightdecompositionandwas

0

Note If thiswerenotthecase
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finite dimensional
irreduciblemoduleof dimension
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Corollary y yep ly is an irreducible

finite dimensional representation

These representations an pairwise non isomorphic

Emry irreducible
finite dimensionalrepresentation is

isomorphic to one of them

TheLastTheorem up just proud and
the factthat

every irreducible
representation of y is a highest

weightrepresentation
This corollary
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dimensional representation

has a highestweight

2Thehighestnight
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highestweight
are isomorphic

Y Gary dominant
algebraically
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